First Geologic Map of Titan

Geologic map of Titan
NASA/JPL-Caltech/ASU

The first global geologic map of Titan, based on radar and infrared data from the Cassini probe, has been released.

The map legend colors represent the broad types of geologic units found on Titan: plains (broad, relatively flat regions), labyrinth (tectonically disrupted regions often containing fluvial channels), hummocky (hilly, with some mountains), dunes (mostly linear dunes, produced by winds in Titan’s atmosphere), craters (formed by impacts) and lakes (regions now or previously filled with liquid methane or ethane). Titan is the only planetary body in our solar system other than Earth known to have stable liquid on its surface—methane and ethane.

The map is the result of research published today in Nature Astronomy.

Previously: Titan in Infrared; Mapping Titan with VIMS; A Topographic Map of Titan.

Mapping the Local Void

R. Brent Tully

A team of researchers led by University of Hawaii astronomer Brent Tully has mapped the structure of the universe at a vast scale. In particular, they have mapped the shape of the Local Void, an empty expanse of intergalactic space hundreds of millions of light years across; the Milky Way is found at the edge of the Void. From the University of Hawaii’s Institute for Astronomy press release:

Now, Tully and his team have measured the motions of 18,000 galaxies in the Cosmicflows-3 compendium of galaxy distances, constructing a cosmographic map that highlights the boundary between the collection of matter and the absence of matter that defines the edge of the Local Void. They used the same technique in 2014 to identify the full extent of our home supercluster of over one hundred thousand galaxies, giving it the name Laniakea, meaning “immense heaven” in Hawaiian.

A video map and interactive 3D model are available. The study behind this model was published in The Astrophysical Journal (paywall). [NBC News]

Mapping the Moon in Black and White

Mapping the Moon in Black and White, an exhibition curated by the Harvard Map Collection at Harvard’s Pusey Library, “guides you through the mutually reinforcing efforts to map the Moon using orbital imagery and the race to walk on the Moon. At ‘Mapping the Moon in Black and White,’ you will also learn how these mapping efforts sat within larger critiques of the Space Race, especially from Civil Rights organizations like the Southern Christian Leadership Conference and the Black Panther Party.” Runs until 31 October 2019; a reception and curatorial talk will take place on 18 September.

Previously: Lunar Cartography During the Age of Apollo; Many Moon Maps; Lunar Geology and the Apollo Program.

Lunar Geology and the Apollo Program

Geologic Map of the Copernicus Quadrangle of the Moon
H. H. Schmitt, N. J. Trask and E. M. Shoemaker, “Geologic Map of the Copernicus Quadrangle of the Moon,” 1967. USGS.

Planetary geologist David Rothery writes about the early attempts to map the Moon’s geology, both before and after the Apollo program. There was a symbiotic relationship between the map and the mission: maps suggested where landings might be most profitable from a geological perspective; and field work by the astronauts informed later moon maps.

National Geographic’s Atlas of Moons

The Atlas of Moons (screenshot)

The Atlas of Moons is National Geographic’s interactive guide to every single moon in the solar system (except for a few moons of dwarf planets and asteroids that we know next to nothing about). The big ones get interactive globes and additional description (as do Mars’s moons Phobos and Deimos, because we have imagery for them). Note that this is an extremely resource-intensive page that will use gigabytes of RAM if you let it.

Many Moon Maps

National Geographic’s 1969 map of the Moon

With the 50th anniversary of Apollo 11 almost upon us, there’s been an uptick in moon-related content, which includes moon-related map content. For example:

New Exhibition. Opening today at The Map House in London, The Mapping of the Moon: 1669-1969, an exhibition of three centuries of lunar cartography. “The exhibition includes rare early 17th and 18th Century observations of the moon from astronomers such as Athanasius Kircher and Jean-Dominique Cassini, important maps produced by NASA for lunar exploration, globes and signed material by astronauts Neil Armstrong, Buzz Aldrin, Alan Bean and Jim Lovell.” Runs until 21 July. [ARTFIXDaily]

New Map. The July 2019 issue of National Geographic has a new map of the Moon that updates the 1969 painted version (see above) with a mosaic based on Lunar Reconnaissance Orbiter imagery. I don’t know whether that means a physical version of the map will be included with the issue as an insert, but I hope it does.

New Way to Navigate. NASA has a post on using GPS on the Moon. Now, I’d thought that using GPS on another world would require the deployment of a GPS satellite constellation around said world. No, this is about using Earth-orbiting GPS signals for lunar navigation, which simulations suggest is possible. The mind boggles.

Eleanor Lutz’s Atlas of Space

Eleanor Lutz

Last week Eleanor Lutz, who gave us an old-style map of Mars in 2016 and a Goddesses of Venus map in 2017, announced her latest project: “Over the past year and a half I’ve been working on a collection of ten maps on planets, moons, and outer space. To name a few, I’ve made an animated map of the seasons on Earth, a map of Mars geology, and a map of everything in the solar system bigger than 10km.” In the coming weeks she’ll be going through each of those maps and explaining the design and source data for each. First up this week: her map of the solar system showing the orbits of every object larger than 10 km in diameter, from Mercury to the Kuiper Belt, and thousands of asteroids in between. [Universe Today]

Previously: ‘Here There Be Robots’: Eleanor Lutz’s Map of Mars; Eleanor Lutz’s Goddesses of Venus.

Lunar Cartography During the Age of Apollo

Writing for Crosscut, Tom Reese memorializes his father, who worked as a cartographer and engineer for NASA’s Aeronautical Chart and Information Center during the Apollo program. Harlan Reese left behind a collection of maps, photos and charts in his garage which, Tom says, still contains “mesmerizing detail and mystery”:

One box has odds and ends of early lunar photography, some of the prints overlain with Dad’s hand-drawn compass points, landing site X’s and handwritten notations. The images were made through large telescopes on Earth, by the Surveyors and Rangers and Lunar Orbiters and early Apollos flying around and over the most promising landing sites. You can also see those smudged fingerprints that likely belong to Dad, mixed with those of many others who used magnifiers and X-Acto knives to carefully slice apart select sections of crater fields. Some small globs of cracked glue remain where they dripped during the process of pasting together the cut pieces to form mosaics of the unexplored landscape.

Some small indentations probably show how the prints were positioned in viewing devices like the extremely precise optical comparator, which helped human eyes interpret the length of shadows inside craters for the first time. These results were coordinated with data about altitude and lunar daylight to provide the most precise terrain measurements possible. Careful airbrushing would smooth over and fill in terra incognita with educated guessing. Finally, this data would be transformed into the precisely printed maps and charts that would help lunar lander pilots to, among other things, second-guess in real time the navigation decisions made by computers of the late 1960s and early 1970s.

Below, a Target of Opprtunity Flight Chart for the Apollo 11 mission:

Apollo 11 Target of Opportunity Flight Chart

The Ordnance Survey Releases a Moon Map

Map of The Moon: 50th Anniversary Edition Map
Ordnance Survey

To commemorate the 50th anniversary of the first crewed landing on the Moon, the Ordnance Survey has released a map of the Apollo 11 landing site. The map is based on a 60-metre digital elevation model and covers a roughly 1,350×1,000 km swath of the near side at a scale of 1:1,470,000. Details from the map are available at this Flickr album. Paul Naylor describes the creation of the map here. The Ordnance Survey is selling a paper version of the map (100×89 cm, in rolled and folded versions) for £16. I kind of want one for my wall.

The Ordnance Survey produced a map of Mars in 2016.

Digital Museum of Planetary Mapping

Camille Flammarion, “Mappemonde géographique de la planète Mars,” Terres du Ciel, 1884.

The Digital Museum of Planetary Mapping is an online collection of maps of the planets and moons of our solar system. There are more than two thousand maps in the catalogue, some dating as far back as the 17th century, but the bulk of them, understandably, are much more recent; also understandably, Mars and the Moon are the subject of most of the maps (40 and 46 percent, respectively).

The site is more like a blog than a library catalogue: it’s powered by WordPress and the individual listings are blog posts, but that’s perfectly legitimate, albeit less elegant. (But then who am I to judge?)

The project was presented at the European Planetary Science Congress in Berlin last month: for news coverage, see Phys.org and Space.com; the press release is here. [WMS/WMS]

Sarah Spencer’s Giant Star Map Tapestry

Sarah Spencer (Twitter)

This huge star map tapestry is the work of Australian maker Sarah Spencer, who created it by hacking a 1980s-era knitting machine. Yes, this thing was knitted: it apparently took more than 100 hours and 15 kg (33 lbs) of (locally sourced Australian) wool to produce this 4.6×2.8-metre (15×9-foot) monster, which is accurate (with the caveat that an equatorial projection distorts familiar circumpolar constellations) and reasonably detailed: the constellations are labelled and the stars’ apparent magnitude is indicated. Space.com has the story. [Boing Boing]

An Amazing Relief Globe of the Moon

In 2016 I told you about Michael Plichta’s first globe, a delightfully retro hand-crafted globe of Mars based on Percival Lowell’s maps that showed the world covered in canals. Plichta’s second globe project is also cool and unusual, but in a completely different way: it’s a relief globe of the Moon. No globe gores were used to make this 30-cm globe: the textured surface is cast in artificial plaster and then painted by hand, a compulsively exacting process laid out in this short video:

Hand-crafted globes are never inexpensive, and though Michael never mentions prices, this one cannot be either. (I’ve seen his Mars globe listed for $1,850.) That said, this is a definite lust object. I desperately want one.

Previously: A Globe of Percival Lowell’s Mars; New Moon Globe Released; Globes of the Solar System.

New Maps of Pluto and Charon

Tenzing Montes, Pluto. NASA/JHUAPL/SWRI/LPI/Paul Schenk.

New global and topographic maps of Pluto and its largest moon, Charon, have been published. The Icarus articles—this one for Pluto, this one for Charon—are behind a paywall, however, though I expect the maps themselves to be freely available at some point.

To create the maps, New Horizons researchers, led by Universities Space Research Association (USRA) senior staff scientist, Paul Schenk, at the Lunar and Planetary Institute, registered all the images from the Long Range Reconnaissance Imager (LORRI) and Multispectral Visible Imaging Camera (MVIC) systems together and assembled the mosaics. This labor-intensive effort required detailed alignment of surface features in overlapping images. Digital analysis of stereo images obtained by both cameras were used to create topographic maps for each region; these were then assembled into integrated topographic maps for each body. These new maps of Pluto and Charon were produced painstakingly over a two-year period as data were slowly transmitted to Earth from the New Horizons spacecraft. The quality of geographically and topographically accurate maps improved with each new batch of images that were returned to Earth.

One surprise revealed by the maps: both Pluto and Charon have a lot of elevation. For example: Pluto’s Tenzing Montes range (above) rises up to 6 km above the surrounding plain, and Charon has a topographic amplitude of 19 km (only Iapetus has more). That’s seriously craggy. Keep in mind that these are not large worlds: Pluto’s radius is 1,200 km, Charon’s 600 km. [Michele Bannister]