CNN: “Before-and-after satellite imagery below shows the damage done to the hard-hit eastern Ukrainian city of Bakhmut over the past year.”
Tag: satellite imagery
Updated Satellite Imagery of Ukraine Reveals Russian Fortifications, Damage
Recent satellite imagery reveals the extent of Russian defensive fortifications built in the past few months in occupied territory in anticipation of Ukraine’s spring counteroffensive: see coverage from CNN and Reuters. Meanwhile, Maps Mania reports that Google Maps’ updated satellite imagery of Ukraine shows the damage inflicted by the Russian invasion.
Satellite Observations of Ukraine’s Wheat Harvest
Satellite observations have made it possible to evaluate the success of Ukraine’s wheat and barley harvest, even in active war zones or occupied territories. NASA Earth Observatory reports that the harvest was, in the end, larger than expected: “At the outset of Russia’s full-scale invasion in February, some analysts cautioned that 20 to 30 percent of Ukraine’s winter crops might not be harvested at the end of the summer. However, NASA Harvest’s analysis indicates that 94 percent of the winter crop was harvested, including 88 percent of winter crops in areas not controlled by Ukraine.”
Tracking the Russian Invasion of Ukraine with Satellite Imagery
Bloomberg’s MapLab newsletter looks at how freely available satellite imagery has enabled widespread monitoring of the Russian invasion of Ukraine.
When the invasion of Ukraine started, these images started popping up on social media and in the news so often that it seems like most of us have access to advanced satellite imagery intelligence in real time. […] But the role of commercial providers in acquiring and sharing so many images with such regularity is unprecedented. Their rise has made military-grade intelligence available to pretty much everyone who wishes to look into it.
What’s notable is that because the satellites are commercial, the images aren’t classified.
Google Didn’t Stop Obscuring Imagery of Russian Military Sites Because the Imagery Hadn’t Been Obscured in the First Place
Yesterday, reports that Google Maps had stopped obscuring satellite imagery of sensitive Russian military facilities spread like wildfire across Twitter. Only there was no official announcement from Google saying they’d done so, and while Ukrainian Twitter was seriously running with it, I wanted to see some confirmation from the mapping side. In the event, an update to Ars Technica’s story says that Google hadn’t stopped blurring the imagery—the imagery hadn’t been blurred in the first place. “A Google spokesperson told Ars that the company hasn’t changed anything with regard to blurring out sensitive sites in Russia, so perhaps none of us were looking closely until now.”
Mapping the Russian Invasion of Ukraine: Roundup #2
Content warning: Some of these links contain disturbing images: I’ve marked them with a †.
More on the question of whether theatre maps accurately reflect the ground situation. Nathan Ruser’s maps have been used to argue that Russian forces are controlling roads rather than territory, but Ruser complains that his maps are being misinterpreted: they were never meant to show territorial control, just troop movements. See also this Twitter thread from Jennifer Cafarella, in which she explains the methodology and reasoning behind her team’s maps.
3D models of bombing damage.† Satellite imagery and 3D photogrammetric data are used to create 3D models of bombing damage in Ukraine. [Maps Mania]
A map of attacks on civilian targets† with photo and video documentation. [Nataliya Gumenyuk]
Where hot spots are literally hot spots. In a Twitter thread, Sotris Valkaniotis shows how military operations in Ukraine show up in Landsat spectral imagery: weapons fire turns up as hot spots showing “very high temperature in short-wave infrared band.”
A Ukrainian map of alleged Russian casualties† and where they were deployed from. [Michael Weiss]
A map of checkpoint traffic. More than two million Ukrainians have fled the Russian invasion. Overwhelmingly, they’re fleeing westward. This map shows how busy each border checkpoint is: Polish border crossings are extremely congested. [Kyiv Independent]
Meanwhile, Kenneth Field has been working on ways to map Ukraine’s refugees. Here’s his most recent iteration:
Update to my illustrative #Ukraine refugee map.
Adds more displaced grey dots to major populated areas.
Adds same stippled symbology to Russian incursion to indicate fuzziness of invasion (neither lines nor areas).#cartography #StandWithUkraine 💙💛 pic.twitter.com/QOyA8RaRi0
— Kenneth Field (@kennethfield) March 8, 2022
Ukraine’s population density. More than 41 million people live in Ukraine. This map from Airwars shows the population density per square kilometre. Which shows how many people in an area are affected by a particular military strike.
Apple says Crimea is Ukrainian. Mashable: “Apple’s Maps and Weather apps now mark Crimea as part of Ukraine when accessed outside of Russia. It appears the company has quietly updated its stance on the territorial dispute.” Apple had marked Crimea as Russian in 2019, which pissed Ukraine off at the time. [TechCrunch]
Finally, this striking bit of art:
By Ukrainian tattoo artist Eugene Anatsky pic.twitter.com/qVybeGYAuE
— Olga Tokariuk (@olgatokariuk) March 5, 2022
The Rise and Fall of Hunga Tonga-Hunga Ha‘apai
A storymap from Esri’s Robert Waterman, based on Maxar satellite imagery, shows the rise and fall of Hunga Tonga and Hunga Ha‘apai from being two separate islands before a 2015 eruption combined them, through its time as an apparently stable but awkwardly compound-named single island until it got blown apart last month.
Previously: Hunga Tonga-Hunga Ha‘apai, Before and After.
How Satellites Revealed the Hunga-Tonga Hunga-Ha’apai Eruption
The BBC’s Jonathan Amos looks at the ways satellites have collected imagery and data on the Hunga-Tonga Hunga-Ha’apai1 volcanic eruption.
Erin Davis’s Average Colours of the World

Erin Davis has created maps showing the average colour of each country of the world (plus maps showing the average colour of each U.S. state and county). She derived the average colour from Sentinel-2 natural-colour satellite imagery; she appends the process and the code to the end of her post. [My Modern Met]
More on the Western U.S. Wildfires

NASA Earth Observatory has had several stories on the western U.S. wildfires, gathered here. This story summarizes the situation; satellite images of the smoke generated by the fires can be seen here, here and here.
In today's Sunday edition of @washingtonpost pic.twitter.com/qHosujRKrG
— Lauren Tierney (@tierneyl) September 13, 2020
Marena Brinkhurst of Mapbox has a comprehensive list of open data sources relating to the wildfires, smoke, and air quality.
Mark Altaweel at GIS Lounge looks at how GIS is being used to map wildfires, smoke and air pollution.
Previously: California Wildfires, 2020 Edition.
Red and Blue vs. Gray and Green

The New York Times uses the colours in aerial images as a proxy for political leanings: rather than red-and-blue electoral maps, the political landscape, Tim Wallace and Krishna Karra argue, is more green and gray.
The pattern we observe here is consistent with the urban-rural divide we’re accustomed to seeing on traditional maps of election results. What spans the divide—the suburbs represented by transition colors—can be crucial to winning elections. […] At each extreme of the political spectrum, the most Democratic areas tend to be heavily developed, while the most Republican areas are a more varied mix: not only suburbs, but farms and forests, as well as lands dominated by rock, sand or clay.
This is a generalization, to be sure, but so are most political maps, and the notion that urban areas tend to vote Democratic while rural areas tend to vote Republican isn’t what I’d call a revelation. Still.
Blank Map Tiles Point to Locations of Xinjiang Detention Centres
As part of their investigation into China’s practice of detaining Uighur and other Muslim minorities in Xinjiang, Buzzfeed News journalists compared blanked-out areas in Baidu Maps with uncensored imagery from Google Earth and satellite data providers, and, after sorting through some 50,000 possible locations using custom web tools, built a database of some “428 locations in Xinjiang bearing the hallmarks of prisons and detention centers.” This article explains the methodology.
Blurring or removing map data to prevent people from seeing something important or sensitive is a pretty loud signal that there’s something important or sensitive to see there. Some five million Baidu Maps tiles were masked in Xinjiang alone—there’s a lot the Chinese government considers sensitive—which made the unmasking considerably harder. But not impossible.
NASA Maps the Damage from the Beirut Explosion

NASA has released a map of the likely extent of damage from Tuesday’s explosion in Beirut.
Synthetic aperture radar data from space shows ground surface changes from before and after a major event like an earthquake. In this case, it is being used to show the devastating result of an explosion.
On the map, dark red pixels—like those present at and around the Port of Beirut—represent the most severe damage. Areas in orange are moderately damaged and areas in yellow are likely to have sustained somewhat less damage. Each colored pixel represents an area of 30 meters (33 yards).
The map is based on data from the European Space Agency’s Copernicus Sentinel program, and was analyzed by NASA’s Advanced Rapid Imaging and Analysis team and the Earth Observatory of Singapore.
Satellite Images Reveal Extent of Beirut Explosion
CNN has satellite images, taken both before and after the explosion, showing the extent of the damage caused by the explosion in Beirut last Tuesday. [Boing Boing]
Primers on Google Earth and Google’s Imagery
A nice, accessible (if overboosterish) history and overview of Google Earth—which despite its deprecation on the desktop is still a thing—from Sarvish Mathi at OneZero. [GIS Lounge] Related: this Google blog post on their imagery, how they get it and how it’s processed.
You must be logged in to post a comment.