Hurricane Florence: A Link Roundup

Hurricane Florence on 12 September 2018, as seen by NASA’s Terra Satellite.

The Washington Post has maps tracking Hurricane Florence’s forecasted path and its potential impact. Researcher Eira Tansey compiled data from several NOAA sources—hurricane track forecasting, potential storm surge flooding and long-duration hazards—to create this map.

A variety of NASA imagery of the storm is available via this Twitter moment. The eye of the storm can be viewed on Google Earth’s Current Weather Radar layer (Chrome-only).

Direct Relief’s Hurricane Florence Social Vulnerability Dashboard shows the extent to which the population in Florence’s path will be disproportionately affected by the storm. As CityLab’s Nicole Javorksy explains, while coastal areas will be hit hardest, residents there are more affluent; socioeconomic status, age, disability status, car ownership can all determine one’s ability to endure or recover from a storm.

The New York Times maps the environmental hazards in Florence’s path: “ponds of coal ash, Superfund sites, chemical plants—and thousands of industrial hog farms with lagoons filled with pig waste.” All have the potential to cause widespread contamination if flooded.

Carbon Monoxide from the California Wildfires

Map: carbon monoxide from the California wildfires
NASA/JPL-Caltech

Carbon monoxide released into the atmosphere by the California wildfires is drifting across North America in concentrations sufficient to turn up on the Atmospheric Infrared Sounder (AIRS) on NASA’s Aqua satellite. A series of maps showing CO concentrations in the United States between 30 July and 7 August, using AIRS data, have been combined into the animation above.

Previously: Mapping the Northern California Wildfires.

Mapping the British Columbia Wildfires

British Columbia isn’t having a very good year either, forest fire wise. For maps of the wildfires burning in the province, see the B.C. Wildfire Service’s interactive map, which shows active wildfires, fire perimeters, and evacuation areas. Evacuation maps are frequently tweeted by Emergency Info BC. Data journalist Tara Carman has posted maps of wildfires and evacuation zones, but they haven’t been updated in a couple of weeks and are now out of date, I fear.

Previously: Mapping the Northern California Wildfires.

Mapping the Northern California Wildfires

Washington Post (screenshot)

The Washington Post maps the largest of the wildfires burning in northern California: the Carr Fire threatening the city of Redding and surrounding communities. The Redding Record Searchlight has drone footage of the destruction wreaked by the Carr Fire in Shasta County. NASA has natural and false-colour imagery (Earth Observatory, Visible Earth) of the Carr Fire, as well as the Ranch and River Fires to the south, the so-called Mendocino Complex. See the Mercury News’s fire map of the Mendocino Complex, whose two fires’ combined acreage is now larger than the Carr Fire. Meanwhile, German astronaut Alexander Gerst observed the California wildfires from the International Space Station. [San Francisco Chronicle]

Mapping Tornado Migration

John Nelson’s map of tornado migration in the United States, showing the seasonal variations in tornado occurrence, is a master class in data visualization and design—in deciding on the right way to present geographic information. The map combines three styles—impressionistic choropleth, weighted mean centre movement diagram, and small multiple—to present month-by-month information all at once; in the accompanying text (also here), Nelson discusses some of the alternatives he could have chosen instead. And in a separate post he talks about how he made the map. [Esri]

Previously: Mapping Tornado Tracks.

The Climate Atlas of Canada

The Climate Atlas of Canada’s interactive map shows the future impact of climate change in Canada. It shows what a number of different weather variables—temperature, number of very hot or very cold days, precipitation, growing season, and so forth—would be under two potential scenarios: one high-carbon, one low-carbon. There’s a lot of data hidden behind a lot of menus; the legends are hidden behind dialog boxes as well. [CBC News]

Mapping Snowfall in the United States

Winter isn’t quite done with us yet where I live. And with that in mind, here’s a neat animated map from the Washington Post that shows the total accumulated snowfall in the contiguous United States. The link includes 48-hour snowfall accumulation maps, satellite imagery, and a map showing which areas of the lower 48 have had more or less snowfall than Washington, D.C. I imagine these maps will have to be updated now.

Mapping Global Sea Level Rise

NASA Earth Observatory:

Global sea level rise has been accelerating in recent decades, according to a new study based on 25 years of NASA and European satellite data. This acceleration has been driven mainly by increased ice melting in Greenland and Antarctica, and it has the potential to double the total sea level rise projected by 2100[. …]

The rate of sea level rise has risen from about 2.5 millimeters (0.1 inch) per year in the 1990s to about 3.4 millimeters (0.13 inches) per year today. These increases have been measured by satellite altimeters since 1992, including the TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3 missions, which have been jointly managed by NASA, France’s Centre national d’etudes spatiales (CNES), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the U.S. National Oceanic and Atmospheric Administration (NOAA). The maps on this page depict the changes in sea level observed by those satellites between 1992 and 2014.

Cape Town’s Disappearing Water Reservoirs

Cape Town is running out of drinking water, a crisis dramatically depicted by NASA Earth Observatory maps that show the depletion of the city’s reservoirs. The animated gif above, for example, “shows how dramatically Theewaterskloof [Cape Town’s largest reservoir] has been depleted between January 2014 and January 2018. The extent of the reservoir is shown with blue; non-water areas have been masked with gray in order to make it easier to distinguish how the reservoir has changed. Theewaterskloof was near full capacity in 2014. During the preceding year, the weather station at Cape Town airport tallied 682 millimeters (27 inches) of rain (515 mm is normal), making it one of the wettest years in decades. However, rains faltered in 2015, with just 325 mm falling. The next year, with 221 mm, was even worse. In 2017, the station recorded just 157 mm of rain.”

Snowfall as Animated Relief Map

Here’s something neat from Garrett Dash Nelson: “the total seasonal snowfall in the continental US for 2017–2018 so far, shown as a relief map,” where total snowfall is expressed as elevation. That’s neat. Even neater: the animated gif that depicts it (a frame of which is above). Even neater than that: he shows how he made said animated gif.

Hot and Cold

NASA Earth Observatory map by Jesse Allen based on MODIS data

The deep freeze is unevenly distributed. NASA Earth Observatory published this temperature anomaly map based on data from the MODIS instrument on NASA’s Terra satellite. A temperature anomaly map shows how much warmer or colder temperatures are versus the average—in this case, land surface temperatures from 26 December 2017 to 2 January 2018 are compared to the 2001-2010 average for the same period. While it’s awfully cold in Canada, and the central and eastern United States, it’s warmer than normal in the southwest. And if you look beyond the North American continent (which is something people should do more often), it’s generally warmer worldwide, particularly in Europe and Asia:

NASA Earth Observatory map by Jesse Allen based on MODIS data

U.S. Wildfire Causes, 1980-2016

Jill Hubley has mapped the causes of wildfires in the United States from 1980 to 2016, based on Federal Wildland Fire Occurrence Data. The map toggles between main causes (human and natural) and specific cause; there’s also a chart ranking the causes.

The highest and lowest ranked causes are highlighted when the chart loads. These represent the cumulative ranking across all years. Lightning, a natural cause, often floats to the top, but that’s only because on the human side, the vote is split between more than twenty options. Lightning doesn’t predominate in all states, though. In Alabama, the number one cause is pyromania. In Indiana, it’s brakeshoes. In Minnesota, it’s field burning. There are a couple of overall trends, too. Smoking is going down as a cause, and powerlines are going up.

[CityLab/Benjamin Hennig]