This NOAA article looks at three kinds of imagery provided by the GOES-16 geostationary weather satellite: GeoColor, the Geostationary Lightning Mapper (!), and full disk infrared imagery from the Advanced Baseline Imager. GOES-16 launched last November and is currently in the checkout phase before it replaces GOES-13 at 75° west latitude.
Tag: satellite
Mapping Global Landslide Susceptibility

NASA Earth Observatory notes the release of a new map of global landslide susceptibility that models the risks of landslides that are triggered by heavy rain. “The map is part of a broader effort to establish a hazards monitoring system that combines satellite observations of rainfall from the Global Precipitation Measurement (GPM) mission with an assessment of the underlying susceptibility of terrain.” [Geographical]
Using Clouds to Map Life
NASA Earth Observatory: “Clouds may seem like distant, ephemeral features that have little to do with life on Earth. In fact, they affect everything from the viability of ecosystems, to how much carbon plants absorb, to the reproductive success of reptiles. So by mapping clouds, new research shows, scientists can indirectly map life.”
Mapping Global Sea Surface Height

Jason-3 is the latest earth observation satellite tasked with measuring global sea surface height; its data will be used in weather and climate research (e.g., El Niño, climate change). Launched on January 17, it’s now in its six-month checkout phase and has produced its first complete map, which corresponds well with the map produced by the still-operational Jason-2 satellite, so that’s a good sign. [via]



Mapping Nitrogen Dioxide Pollution
A decade’s worth of data from the Ozone Monitoring Instrument aboard the Aura satellite reveals the change in global nitrogen dioxide (NO2) pollution from 2005 to 2014: down significantly in some areas, due to stricter emissions controls, but up sharply in others. More at NASA Earth Observatory.
Lake Poopó Dries Up
[sciba leftsrc=”https://www.maproomblog.com/xq/wp-content/uploads/2016/01/lake-poopo-2013.jpg” leftlabel=”12 April 2013″ rightsrc=”https://www.maproomblog.com/xq/wp-content/uploads/2016/01/lake-poopo-2016.jpg” rightlabel=”15 January 2016″ mode=”horizontal” width=””]
Lake Poopó has become the Aral Sea of the Andes. Thanks to drought, water diversion and mining activity, the lake—long, wide, shallow, saline and the second-largest in Bolivia—has basically dried up, as this comparison of 2013 and 2016 Landsat 8 images demonstrates. CBC News, The Independent.
New Year’s Flooding in the Midwest
[sciba leftsrc=”https://www.maproomblog.com/xq/wp-content/uploads/2016/01/new-year-flooding-1.jpg” leftlabel=”8 Dec 2015″ rightsrc=”https://www.maproomblog.com/xq/wp-content/uploads/2016/01/new-year-flooding-2.jpg” rightlabel=”1 Jan 2016″ mode=”horizontal” width=””]
These two Landsat images illustrate the extent of flooding along the Wabash and Illinois Rivers at the end of last year, as 6-10 inches of rain fell over the midwestern United States. The image from 8 December 2015, above left, shows normal water levels; the image from 1 January 2016, above right, shows the rivers in flood. Use the slider to compare the two views. Original image. [via]
Pacific Ocean Time Lapse
Mapping the Thaw
Scientists have been tracking seasonal freeze-thaw patterns for 30 years. This map, produced from data collected by NASA’s Soil Moisture Active Passive satellite, “shows the freeze-thaw status of areas north of 45 degrees latitude on March 5, 2015, as spring approached. Frozen land is blue; thawed land is pink. The measurement is possible because frozen water forms crystalline structures that can be detected by satellites.” NASA Earth Observatory.
Herbal Earth
Today NASA released a set of vegetation maps based on data from the Suomi NPP satellite. Flickr photoset, YouTube video. The maps depict a year’s worth of changes in vegetation. “High values of Normalized Difference Vegetation Index, or NDVI, represent dense green functioning vegetation and low NDVI values represent sparse green vegetation or vegetation under stress from limiting conditions, such as drought.” Image credit: NASA/