Mapping Global Landslide Susceptibility

Image: Jesse Allen. Landslide susceptibility data: Thomas Stanley and Dalia Kirschbaum (NASA/GSFC). Topographic data: SRTM. (NASA Earth Observatory)

NASA Earth Observatory notes the release of a new map of global landslide susceptibility that models the risks of landslides that are triggered by heavy rain. “The map is part of a broader effort to establish a hazards monitoring system that combines satellite observations of rainfall from the Global Precipitation Measurement (GPM) mission with an assessment of the underlying susceptibility of terrain.” [Geographical]

Mapping Arctic Warming

At All Over the Map, Betsy Mason posts 11 Ways to See How Climate Change Is Imperilling the Arctic, a collection of maps and infographics depicting several different indicators of global warming, including sea ice extent, atmospheric temperatures, growing season, polar bear populations, as well as projected shipping routes for an ice-free Arctic Ocean.

NASA Earth Observatory

Meanwhile, NASA Earth Observatory points—while it still can—to a study mapping the extent of existing and potential thermokarst (thawed permafrost) landscapes. On the Earth Observatory maps (see North America, above), “[t]he different colors reflect the types of landscapes—wetlands, lakes, hillslopes, etc.—where thermokarst is likely to be found today and where it is most likely to form in the future.”

Previously: Mapping Arctic Sea IceMapping the Thaw.

November Sea Ice

eo-sea-ice

NASA Earth Observatory: “In November, the sea ice extent averaged 9.08 million square kilometers (3.52 million square miles)—the lowest November extent in the satellite record. The yellow line shows the median extent from 1981 to 2010, and gives an idea of how conditions this November strayed from the norm.” Also shows sea ice extent for previous years dating back to 1978. Hudson Bay was icebound in November not that long ago.

Previously: Mapping Arctic Sea Ice.

Mapping the Thaw

Scientists have been tracking seasonal freeze-thaw patterns for 30 years. This map, produced from data collected by NASA’s Soil Moisture Active Passive satellite, “shows the freeze-thaw status of areas north of 45 degrees latitude on March 5, 2015, as spring approached. Frozen land is blue; thawed land is pink. The measurement is possible because frozen water forms crystalline structures that can be detected by satellites.” NASA Earth Observatory.