Predicting Future Malaria Outbreaks from Satellite Data

Data from NASA’s earth-observing satellites is being used to predict future malaria outbreaks in the Amazon rainforests of Peru. To be sure, as the above video shows, this is really about taking geospatial and remote sensing data from several different sources and correlating them to build a predictive model: it’s John Snow’s cholera map at large scale and for the satellite age.

Cartographies of Disease

The revised edition of Tom Koch’s Cartographies of Disease: Maps, Mapping, and Medicine—“a comprehensive survey of the technology of mapping and its relationship to the battle against disease”—is now out from Esri Press. (Or at least it’s scheduled to be: the paperback is not yet in stock at Amazon.) [GIS Lounge]

Koch is also the author of Disease Maps: Epidemics on the Ground (2011).

Mapping Swiss Mortality

Earlier this year, a study in the Swiss Medical Weekly explored the spatial patterns of Swiss mortality rates between 2008 and 2012. The study looked at the most common causes of death and produced a number of maps. The Tages Anzeiger’s story on the study (in German) focused on only two of them—diabetes and liver disease—that produced the most dramatic regional variations: basically, people in German-speaking regions are more likely to die of diabetes, and people in French-speaking regions are more likely to die of liver disease. The newspaper’s interactive maps are nicer, too:

Maps of mortality due to diabetes (top) and liver disease (bottom) in Switzerland. Tages Anzeiger, 6 March 2016.
Maps of mortality due to diabetes (top) and liver disease (bottom) in Switzerland. Tages Anzeiger, 6 March 2016.

[Maps Mania]

Mapping Obamacare

The New York Times
The New York Times

The New York Times maps the decline in the numbers of the uninsured since the implementation of the Affordable Care Act.

Over all, the gains are substantial: a seven-percentage-point drop in the uninsured rate for adults. But there remain troublesome regional patterns. Many people in the South and the Southwest still don’t have a reliable way to pay for health care, according to the new, detailed numbers from a pair of groups closely tracking enrollment efforts. Those patterns aren’t an accident. As our maps show, many of the places with high uninsured rates had poor coverage before the Affordable Care Act passed. They tend to be states with widespread poverty and limited social safety nets. Look at Mississippi and Texas, for example.

The CDC, Cholera Maps and the 2011 Haiti Epidemic

A map on a display at the CDC’s in-house museum hides in plain sight what U.S. government authorities are reluctant to admit: the origin of the 2011 cholera epidemic in Haiti (a U.N. peacekeeping base housing a batallion from Nepal). All the more amazing by its juxtaposition with John Snow’s famous 1854 cholera map of London. It’s as if they wanted us to tell us something while being prevented from doing so.

Lead Exposure Risk Map

vox-lead

Vox’s lead exposure risk map takes a nationwide look at a crisis some might have thought was limited to Flint, Michigan. “The areas where kids are at highest risk of lead exposure—an estimate calculated using government data about the surroundings—are scattered all across the country.” Lead exposure data is hard to come by, so exposure risk is calculated based on Washington State’s methodology, which uses age of housing and poverty as risk factors. [Mapbox]

Mapping the Zika Virus (and the Problems with Doing So)

Maps about the Zika virus have been cropping up lately. I’ve been reluctant to post them, initially because I didn’t want to play a role in whipping up unnecessary panic, but also because—the more I looked at them—many of the maps are problematic in and of themselves.

Some, like this CDC map of countries with active Zika virus transmission, lack useful detail. Or if they have detail, it’s not at all helpful: The Economist’s map shows the local risk of transmission and the number of travellers from Brazil; this map aggregates news stories about the virus and overlays the predicted distribution—predicted, mind—of two mosquito species. Neither map says anything about the spread of the virus itself; both could do a great job of scaring the crap out of anyone who gives either map a casual look. Finally, like these Scientific American maps, they can be extremely U.S.-centric, suggesting that the virus is only a problem insofar as it affects us. [via]

Update, 4 February: Direct Relief’s Zika virus maps, some of which taken from the above, share the problem of indirectness but lose the U.S.-centricity. [via]

Mapping U.S. Drug Overdoses

nyt-overdose

The New York Times maps the rise in deaths from drug overdoses. “Some of the largest concentrations of overdose deaths were in Appalachia and the Southwest, according to new county-level estimates released by the Centers for Disease Control and Prevention. […] The death rate from drug overdoses is climbing at a much faster pace than other causes of death, jumping to an average of 15 per 100,000 in 2014 from nine per 100,000 in 2003.” [via]

U.S. Life Expectancy by County

U.S. life expectancy by county, 2009

County-by-county life expectancy estimates released last month by the Institute for Health Metrics and Evaluation reveal a startling gap between the longest-lived and shortest-lived areas of the country: the difference can be as much as 15 years.

The range of life expectancies is so broad that in some counties, such as Stearns, Minnesota, lifespans rival some of the places where people live the longest—Japan, Hong Kong, and France—while in other counties, life expectancies are lower than places that spend far less on health care—Egypt, Indonesia, and Colombia. Even within states, there are large disparities. Women in Fairfax, Virginia, have among the best life expectancies in the world at 84.1 years, while in Sussex, Virginia, they have among the worst at 75.9 years.

And the situation isn’t improving either: “In 661 counties, life expectancy stopped dead or went backwards for women since 1999. By comparison, life expectancy for men stopped or reversed in 166 counties.” When people refer to the U.S. as a Third World country, this sort of thing—the disparity, the decline—is usually one of the reasons why. Via Tobias Buckell.