Map Contest: Proposed Mars Landing Sites

The ICA’s Commission on Planetary Cartography has put out a call for maps of the 47 proposed exploration zones on Mars.

The project is to select one candidate landing site and design an actual map that you envision will be useful in surface operations. We ask that you do not create simply a geologic map, but rather a product that can be used by the astronauts during their approximately one-year long mission within the Exploration Zone. This requires creativity, and it is also useful to have a good knowledge of surface features, surface hazards, science goals and the use of the proper cartographic tools.

The contest is open to students, young professional cartographers, and graphic artists in any country of the world.

More at the ICA and All Over the Map. [Leventhal/WMS]

The Nuns Who Helped Map the Night Sky

Catholic News Service: “Of the many momentous or menial tasks women religious perform, one of the better-kept secrets has been the role of four Sisters of the Holy Child Mary who were part of a global effort to make a complete map and catalog of the starry skies. […] Sisters Emilia Ponzoni, Regina Colombo, Concetta Finardi and Luigia Panceri, all born in the late 1800s and from the northern Lombardy region near Milan, helped map and catalog nearly half a million stars for the Vatican’s part in an international survey of the night sky.” [@CUATheoPhilLib]

The First Global Topographic Map of Mercury


The first complete topographic map of Mercury, based on data from the MESSENGER mission, was released last Friday: MESSENGER, USGS. The version above is a Robinson projection without labels (Robinson with labels, global DEM). “Mercury’s surface is colored according the topography of the surface, with regions with higher elevations colored brown, yellow and red, and regions with lower elevations appearing blue and purple.” [GIS and Science, The National Map]

Pluto Map Updated with Earlier, Lower-Resolution Imagery

Image credit: NASA/JHUAPL/SwRI.

An updated map of Pluto now includes lower-resolution imagery from earlier in New Horizons’ approach. “The map includes all resolved images of Pluto’s surface acquired between July 7-14, 2015, at pixel resolutions ranging from 18 miles (30 kilometers) on the Charon-facing hemisphere (left and right edges of the map) to 770 feet (235 meters) on the hemisphere facing New Horizons during the spacecraft’s closest approach on July 14, 2015 (map center). The non-encounter hemisphere was seen from much greater range and is, therefore, in far less detail.” See coverage from Universe Today and Wired (the latter has a nice loupe feature on the map).

NASA also released an elevation map of the area around Sputnik Planum (the left side of the heart-shaped feature).

Previously: New Maps of Ceres and Pluto.

Green Mars


Kenneth Field’s map of Mars (note updated link) now includes an option to add oceans, with checkboxes to fill the landscape to various elevations.

You can irrigate the planet below the areoid on this map using the water layers. You’ll notice the water layers aren’t blue. On Earth, water appears blue due to red, orange, yellow and green wavelengths of light being absorbed more strongly than blue and also the reflectence of the blue sky. Since Mars has relatively little atmosphere and it’s farther from the sun it’s likely water will appear differently. We’re imagining wavelengths will be absorbed differently, perhaps returning an alien green?

[Maps Mania] A print version is also available: it’s a one-gigabyte PDF that measures 38″×72″ [Kenneth Field].

Previously: Kenneth Field’s Map of Mars.

More on Mapping Pluto’s Geology

Postdoctoral researcher Oliver White talks about creating maps of Pluto’s geology from New Horizons flyby imagery.


I have studied this area in great detail, and have defined each unit based on its texture and morphology—for example, whether it is smooth, pitted, craggy, hummocky or ridged. How well a unit can be defined depends on the resolution of the images that cover it. All of the terrain in my map has been imaged at a resolution of approximately 1,050 feet (320 meters) per pixel or better, meaning textures are resolved such that I can map units in this area with relative confidence.

By studying how the boundaries between units crosscut one another, I can also determine which units overlie others, and assemble a relative chronology (or timeline) for the different units; this work is aided by crater counts for the different terrains that have been obtained by other team members. I caution that owing to the complexity of the surface of Pluto, the work I’ve shown is in its early stages, and a lot more is still to be done.

Previously: Mapping Pluto’s Geology.

De Wit’s Planisphærium Cœleste

Frederick de Wit, Planisphærium cœleste, 1670.
Frederick de Wit, Planisphærium cœleste, 1670.

As part of its regular “Map Monday” feature, Atlas Obscura looks closely at Frederick de Wit’s Planisphærium cœleste (1670), above. Like other celestial maps of the period, it’s as though the monsters on sea charts have been placed in the skies—especially true for constellations like Cetus, as the article shows.

This reminds me that there’s quite a lot about antique celestial maps in The Map Room’s archives: The Face of the Moon; Star Atlases; Historical Celestial Atlases on the Web; The U.S. Naval Observatory’s Celestial AtlasesDivine Sky: The Artistry of Astronomical MapsAnother Look at the Linda Hall Library’s Celestial AtlasesChristian Constellations.

kanaspb2ndedb.inddA book about celestial maps, Nick Kanas’s Star Maps: History, Artistry and Cartography, is now in its second edition (Springer, 2012). I own a copy of the first edition.

Previously about Frederick de Wit: A New Book About Frederick de Wit.

Topographic Map of Mars

Image credit: NASA/JPL/GSFC/ASU/USGS/ESA/DLR/FU Berlin (G. Neukum)/Daniel Macháček.

Daniel Macháček released his topographic map of Mars, based on the latest probe data, in November 2014. It uses the Mercator projection between 65° north and 65° south latitude and stereographic projections for the poles. It can be downloaded in insanely high resolution: 17,400×14,700 (78 MB JPEG, 106 MB PDF). His blog post (in Czech: use the translate button) has all the technical details. I particularly like the colour scheme he used for elevation data: the low-lying areas are coloured like deep oceans, which seems appropriate. [Maps on the Web]

Pluto Globe Gores

Image credit: NASA/JHUAPL/SwRI/Sarah J. Morrison. CC licence.

If you wanted to make your own globe of Pluto based on New Horizons imagery, now’s your chance: Sarah Morrison has created globe gores based on NASA’s photomosaic global map of Pluto.

(Globe gores for other planets and moons are available for download from the USGS’s Astrogeology Science Center.)

Previously: Globes of the Solar System.

Mapping Titan with VIMS


Because of its thick and opaque atmosphere, Titan’s largest moon, Titan, has to be mapped piece by piece during close fly-bys by the Cassini spacecraft, using radar, infrared and visual data. The above image is one of two montages that “shows four synthetic views of Titan created using data acquired by the visual and infrared mapping spectrometer (VIMS) on board NASA’s Cassini spacecraft between 2004 and 2015. These views demonstrate some of the progress researchers have made in creating smooth-looking maps of Titan from the multitude of different VIMS observations made under a wide variety of lighting and viewing conditions.” More on VIMS here.

Previously: Titan in StereoTopography of Titan“Extraterrestrial Islands in a Methane Sea”Mapping the Solar System: Mercury and TitanHuygens Probe Images of Titan.

New Gravity Map of Mars


A new gravity map of Mars, based on data from three orbiting spacecraft, has been released. “Slight differences in Mars’ gravity changed the trajectory of the NASA spacecraft orbiting the planet, which altered the signal being sent from the spacecraft to the Deep Space Network. These small fluctuations in the orbital data were used to build a map of the Martian gravity field.”

Mars Gravity Map
NASA/GSFC/Scientific Visualization Studio

The data enables the crustal thickness of Mars to be determined to a resolution of approximately 120 kilometres. Here’s a short video explaining the significance:

‘Here There Be Robots’: Eleanor Lutz’s Map of Mars


Eleanor Lutz’s map of Mars isn’t exactly medieval in style (that’s not the right word for it), but it applies an ostensibly old aesthetic to a very modern map subject. “I thought it would be fun to use their historical design style to illustrate our current adventures into unexplored territory. […] Since the base map is hand-drawn I also added an overlay of actual NASA topographic imagery. This way even if some of my lines are a little off, you can still see what the actual ground looks like underneath.” Whatever you call it, it looks amazing. [via]

Mapping Pluto’s Geology

Image credit: NASA/JHUAPL/SwRI.

New Horizons mission scientists have created a geological map of a portion of Pluto’s terrain. “This map covers a portion of Pluto’s surface that measures 1,290 miles (2,070 kilometers) from top to bottom, and includes the vast nitrogen-ice plain informally named Sputnik Planum and surrounding terrain. As the key in the figure below indicates, the map is overlaid with colors that represent different geological terrains. Each terrain, or unit, is defined by its texture and morphology—smooth, pitted, craggy, hummocky or ridged, for example. How well a unit can be defined depends on the resolution of the images that cover it. All of the terrain in this map has been imaged at a resolution of approximately 1,050 feet (320 meters) per pixel or better, meaning scientists can map units with relative confidence.”

Image credit: NASA/JHUAPL/SwRI.